
A Datatype of Planar Graphs

Malin Altenmüller and Conor McBride

University of Strathclyde

TYPES 2022



Why Planar Graphs?

• string diagrams as syntax for monoidal categories

• graphs as the combinatorial objects representing string
diagrams

• monoidal categories with specific topological properties:
no wires cross!

1 / 22



What are Planar Graphs?

• embedding = drawings of a graphs on
some surface

• graph can have multiple embeddings
(same or different surface)

• planar graph: has a plane embedding

For embeddings, the order of edges around vertices matters!

2 / 22



What are Planar Graphs?

• embedding = drawings of a graphs on
some surface

• graph can have multiple embeddings
(same or different surface)

• planar graph: has a plane embedding

For embeddings, the order of edges around vertices matters!

2 / 22



What are Planar Graphs?

• embedding = drawings of a graphs on
some surface

• graph can have multiple embeddings
(same or different surface)

• planar graph: has a plane embedding

For embeddings, the order of edges around vertices matters!

2 / 22



Graphs as a Datatype?

Two problems:

• graphs are cyclic

• composition is really nice on paper, but...

3 / 22



Graphs as a Datatype?

Two problems:

• graphs are cyclic

• composition is really nice on paper, but...

4 / 22



Spanning Trees to the Rescue

Graph = Spanning Tree + Non-Tree Edges

5 / 22



Spanning Trees to the Rescue

Graph = Spanning Tree + Non-Tree Edges

5 / 22



Spanning Trees to the Rescue

Graph = Spanning Tree + Non-Tree Edges

5 / 22



The Datatype(1)

Graph = Spanning Tree + Non-Tree Edges

6 / 22



The Datatype(1)

Graph = Spanning Tree + Non-Tree Edges + Sectors

6 / 22



The Datatype(2)

Clockwise traversal of the whole structure:

7 / 22



The Datatype(2)

Clockwise traversal of the whole structure:

8 / 22



The Datatype(2)

Clockwise traversal of the whole structure:

8 / 22



The Datatype(2)

Clockwise traversal of the whole structure:

8 / 22



The Datatype(2)

Clockwise traversal of the whole structure:

8 / 22



A Stack of Non-Tree Edges

9 / 22



A Stack of Non-Tree Edges

9 / 22



A Stack of Non-Tree Edges

9 / 22



A Stack of Non-Tree Edges

9 / 22



A Stack of Non-Tree Edges

9 / 22



A Stack of Non-Tree Edges

9 / 22



A Stack of Non-Tree Edges

9 / 22



The Datatype(3)

Graph type indexed by stack of edges before and after traversal:

data Step : (List E × SE) → (List E × SE) → Set where

sector : S → Step (es , sec)(es , edg)

push : (e : E) → Step (es , edg)(e,-es , sec)

pop : (e : E) → Step (e,-es , edg)(es , sec)

span : E → V → Star Step (as , sec)(bs , edg)

→ Step (as , edg)(bs , sec)

10 / 22



Indexing – Example

11 / 22



Indexing – Example

11 / 22



Indexing – Example

plane graph has index ([] , sec) ([] , sec)

11 / 22



Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.

12 / 22



Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.

12 / 22



Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.

12 / 22



Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.

12 / 22



Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.

12 / 22



Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.

12 / 22



Locality

Non-tree edges delimit regions of the graph:

13 / 22



Zippers1 for Graphs

• focus to a sector in the graph

• store a path through the structure to that sector

• at each step: go along one tree edge, remember siblings

1Huet, “The Zipper”.

14 / 22



Zipper Example

15 / 22



Zipper Example

15 / 22



Zipper Example

15 / 22



Zipper Example

15 / 22



Re-rooting

• start from a zipper

• move the spanning tree’s root to the sector in focus

• change the order of traversal of the spanning tree

• swap the stack operation of the sector’s stack edges

16 / 22



Re-rooting

• start from a zipper

• move the spanning tree’s root to the sector in focus

• change the order of traversal of the spanning tree

• swap the stack operation of the sector’s stack edges

16 / 22



Turn Non-Tree Edges

17 / 22



Turn Non-Tree Edges

Theorem: Re-rooting preserves planarity.

18 / 22



Turn Non-Tree Edges

Theorem: Re-rooting preserves planarity.

18 / 22



Ideas/Future Work(1)

Store data at the sectors: graph re-rooted to here. Get a context
comonad2.

2Uustalu and Vene, “Comonadic Notions of Computation”.

19 / 22



Ideas/Future Work(2)

Overconnected spanning trees represent
rational structures.

20 / 22



Ideas/Future Work(3)

How about different surfaces from the plane?
Higher genus surfaces?
Non-orientable surfaces?
What to use instead of a stack?

21 / 22



Thank You!

A Datatype of Planar Graphs

Malin Altenmüller and Conor McBride

malin.altenmuller@strath.ac.uk

22 / 22



Huet, Gérard P. “The Zipper”. In: J. Funct. Program. 7.5 (1997),
pp. 549–554. url: http://journals.cambridge.org/
action/displayAbstract?aid=44121.

Uustalu, Tarmo and Varmo Vene. “Comonadic Notions of
Computation”. In: Proceedings of the Ninth Workshop on
Coalgebraic Methods in Computer Science, CMCS 2008,
Budapest, Hungary, April 4-6, 2008. Ed. by Jiŕı Adámek and
Clemens Kupke. Vol. 203. Electronic Notes in Theoretical
Computer Science 5. Elsevier, 2008, pp. 263–284. doi:
10.1016/j.entcs.2008.05.029. url:
https://doi.org/10.1016/j.entcs.2008.05.029.

http://journals.cambridge.org/action/displayAbstract?aid=44121
http://journals.cambridge.org/action/displayAbstract?aid=44121
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1016/j.entcs.2008.05.029

	References

