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Why Planar Graphs?

• string diagrams as syntax for monoidal categories

• graphs as the combinatorial objects representing string
diagrams

• monoidal categories with specific topological properties:
no wires cross!

1 / 22



What are Planar Graphs?

• embedding = drawings of a graphs on
some surface

• graph can have multiple embeddings
(same or different surface)

• planar graph: has a plane embedding

For embeddings, the order of edges around vertices matters!
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Graphs as a Datatype?

Two problems:

• graphs are cyclic

• composition is really nice on paper, but...
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Spanning Trees to the Rescue

Graph = Spanning Tree + Non-Tree Edges
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The Datatype(1)

Graph = Spanning Tree + Non-Tree Edges
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The Datatype(1)

Graph = Spanning Tree + Non-Tree Edges + Sectors
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The Datatype(2)

Clockwise traversal of the whole structure:
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A Stack of Non-Tree Edges
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The Datatype(3)

Graph type indexed by stack of edges before and after traversal:

data Step : (List E × SE) → (List E × SE) → Set where

sector : S → Step (es , sec)(es , edg)

push : (e : E) → Step (es , edg)(e,-es , sec)

pop : (e : E) → Step (e,-es , edg)(es , sec)

span : E → V → Star Step (as , sec)(bs , edg)

→ Step (as , edg)(bs , sec)
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Indexing – Example
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Indexing – Example

plane graph has index ([] , sec) ([] , sec)
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Planarity

Theorem: A stack of non-tree edges ensures planarity of a graph.

Non-tree edges form a well bracketed word abbcca.
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Locality

Non-tree edges delimit regions of the graph:

13 / 22



Zippers1 for Graphs

• focus to a sector in the graph

• store a path through the structure to that sector

• at each step: go along one tree edge, remember siblings

1Huet, “The Zipper”.
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Zipper Example
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Zipper Example
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Re-rooting

• start from a zipper

• move the spanning tree’s root to the sector in focus

• change the order of traversal of the spanning tree

• swap the stack operation of the sector’s stack edges
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Turn Non-Tree Edges
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Turn Non-Tree Edges

Theorem: Re-rooting preserves planarity.
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Turn Non-Tree Edges

Theorem: Re-rooting preserves planarity.
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Ideas/Future Work(1)

Store data at the sectors: graph re-rooted to here. Get a context
comonad2.

2Uustalu and Vene, “Comonadic Notions of Computation”.
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Ideas/Future Work(2)

Overconnected spanning trees represent
rational structures.
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Ideas/Future Work(3)

How about different surfaces from the plane?
Higher genus surfaces?
Non-orientable surfaces?
What to use instead of a stack?
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Thank You!

A Datatype of Planar Graphs

Malin Altenmüller and Conor McBride

malin.altenmuller@strath.ac.uk
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