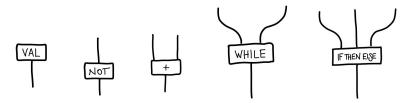
CONTOUR CATEGORIES, CONTROL FLOW ANALYSIS

Malin Altenmüller

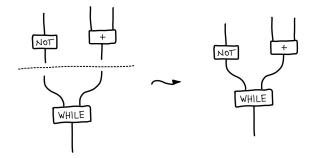
Huawei-Edinburgh Joint Lab Workshop 12 December 2023

Abstract Syntax – Generators

abstract syntax as free trees on a set of generators:



Abstract Syntax Trees

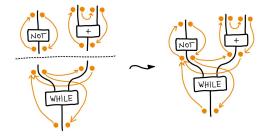


Control Flow – Generators

assign control flow to all generators:

Control Flow – Composition

composition follows from the underlying AST:



Control Flow – Composition

composition follows from the underlying AST:

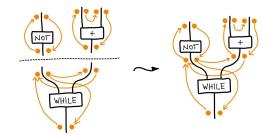


(a closed term without any inputs has very boring control flow)

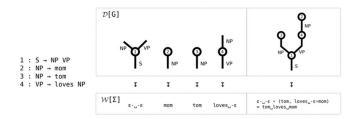
Control Flow

- order of execution of instructions, also traversal of AST
- can go forwards or backwards
- includes all possible cases: overapproximation
- crucially: order of variable accesses
- · control flow optimisations mainly about memory access

Focus and Environment



Context-free Languages¹



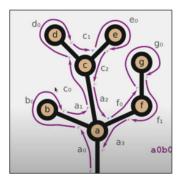
in the context of defining words in a context-free language:

- language generators as nodes
- building free trees from those

 $^{^1}$ Melliès and Zeilberger, "Parsing as a lifting problem and the Chomsky-Schützenberger representation theorem".

Contour Categories

describe a left-to-right traversal of the derivation tree:



Generalising Contour Categories

• not strict about arrows that are allowed, but some rules still apply:

- the notion of contour is not ideal for being overly generalised
- inspired by strategies on games: relations on sets with polarity

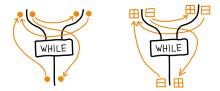
Sets with Polarity

- sets with polarity: $\mathcal{A} = (\mathcal{A}, \textit{pol}_{\mathcal{A}})$ where $\textit{pol}_{\mathcal{A}} : \mathcal{A} \to \{-, +\}$
- negated polarity : \mathcal{A}^{\perp}
- union : $\mathcal{A} \| \mathcal{B}$

Relations on Sets with Polarity

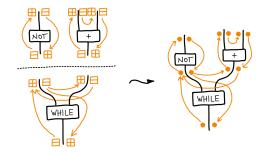
we are interested in relations:

- $R: \mathcal{A}^{\perp} \| \mathcal{B}$
- relations where all arrows are of the form $\rightarrow +$



Interaction and Composition

Compose relations $R : \mathcal{A}^{\perp} \| \mathcal{B}$ and $S : \mathcal{B}^{\perp} \| \mathcal{C}$



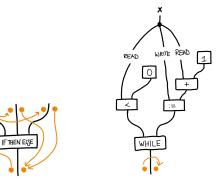
- compose along *elements*, not polarities
- interaction: remember intermediate steps
- composition: forget about intermediate states

Advantages:

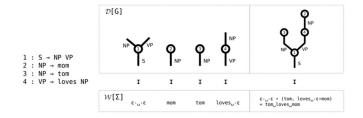
- different notions of composition
- well-known area of game theory
- extendable to represent exception
- extendable to concurrent processes

So far it's all Syntax

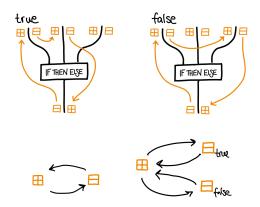
- control flow defined in this way has no access to values
- but we may want to include some semantic information



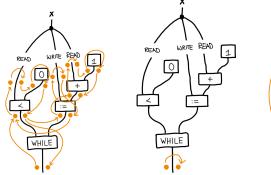
Automata *refining* context-free grammars

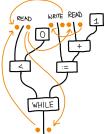


Automata refining Control Flow



Multiple Options for Refinement?





Summary

- define control flow on top of the AST
- relations on sets with polarities to generalise contour categories
- incorporate semantic information by an automaton *refining* the original definition

THANK YOU FOR YOUR ATTENTION!

Appendix

