
A Category of Surface-Embedded
Graphs

Malin Altenmüller

malin.altenmuller@strath.ac.uk

GReTA Seminar, 8th September 2023

About me

• PhD Student at the University of Strathclyde in Glasgow,
in the Mathematically Structured Programming Group
(supervised by Ross Duncan & Conor McBride)

• Research Intern at Huawei R&D in Edinburgh,
working with graphs as intermediate compiler representation
(working with Dan Ghica)

Theory and Implementation of Topology-Aware String Diagrams:

• reasoning with diagrams — categories of graphs

• data types for diagrams (and their reasoning) in Agda

1 / 30

String Diagrams

• syntax for monoidal categories

• composition both ways easy for the diagram

• represent computational processes

• observe specific properties of the monoidal category,
e.g. symmetric monoidal category (SMC)

2 / 30

Topology-Aware String Diagrams

Interested in non-symmetric theories:

• string diagrams for quantum, swaps are non-trivial:

• other example: printing circuits

• general theory to instanciate to symmetry, braiding, etc.

3 / 30

Graphs

• reasoning on the diagrams themselves (rewrite rules)

• need a combinatorial representation of them

• using graphs,
translating generators into vertices, wires into edges:

• reasoning by graph rewriting, categorically

Graphs of non-symmetric diagrams?

4 / 30

Graph Embeddings

• drawing of a graph onto a surface

• planar graph if it has a plane embedding

5 / 30

Rotation Systems

How to define a graph embedding combinatorially?

• rotation system: store the order of incident edges at each vertex

Theorem
A rotation system uniquely determine a graph embedding.

• plan: define a suitable category of graphs,
then add rotation information

6 / 30

An Example of DPO Rewriting

given: rewrite rule

7 / 30

An Example of DPO Rewriting

given: rewrite rule as span with common boundary in the middle

7 / 30

An Example of DPO Rewriting

given: matching of the LHS within a graph

7 / 30

An Example of DPO Rewriting

construct: context graph by pushout complement

7 / 30

An Example of DPO Rewriting

construct: final graph by pushout

7 / 30

DPO Rewriting

L B R

G G \ L G [R/L]
⌝ ⌜

• rewrite rules are L ⇒ R, with common boundary B

• double-pushout diagram, all maps are embeddings

• required: pushouts, pushout complements, notion of embedding
(related: adhesive categories1)

1Lack and Sobociński, “Adhesive categories”.

8 / 30

DPO Rewriting

L B R

G G \ L G [R/L]
⌝

Observation:

• C = G \ L: context with a hole

• L = G \ C : LHS with a “hole”

9 / 30

DPO Rewriting

G \ C B R

G C G [R/L]
⌝

Observation:

• C = G \ L: context with a hole

• L = G \ C : LHS with a “hole”

9 / 30

Standard Category of Graphs

We start from the standard category of graphs:

• graphs are E V
s

t

• morphisms (E V
s

t
) → (E ′ V ′s′

t′
) are pairs of an edge

map fE : E → E ′ and a vertex map fV : V → V ′, such that:

E E ′

V V ′

s

fE

s′

fV

E E ′

V V ′

t

fE

t′

fV

Remark
(Almost) all graphs are drawn undirected in this presentation.

10 / 30

Open Graphs

• process diagrams have inputs and outputs

• but also potentially holes

• encode dangling edges in the theory

• different approaches:
open graphs, representative vertices, cospans2

• morphisms for open graphs don’t preserve the surface

• cannot add rotation information to loose edges

2Baez and Courser, Structured Cospans.

11 / 30

Boundary Vertex

• identify the “outside” of a graph

• attach input and output edges to this region

• outside is one region of the graph

• replace the region with a boundary vertex

• all graphs are total

• I can add rotation information to each vertex later

12 / 30

Dual Boundary Vertex

• other regions of the graphs may have dangling edges

• replace each of them by a vertex

• graph with an outside and one hole

13 / 30

Rewrite Rules

a rewrite rule now looks like this:

related: double pushout rewriting of graphs with interfaces3

3Bonchi et al., “Confluence of Graph Rewriting with Interfaces”.

14 / 30

Requirements for Graph Morphisms

• vertex map needs to be partial

• edge map is cannot be injective

What is the right notion of embedding then?

15 / 30

Flags and Flag Maps

• connection points between vertices and their incident edges,
pairs (v , e)

• flag map (fE , fV) partial map induced by graph map

• characterise morphisms/embeddings on the flag map

• example: flag injectivity

16 / 30

Flag Surjectivity

Starting with the condition for standard graph morphisms
(V ,E) → (V ′,E ′):

E E ′

V V ′

s

fE

s′

fV

What about vertices with no edges attached?

17 / 30

Flag Surjectivity

Condition on vertices, by considering the preimage:

V V ′

P(E) P(E ′)

s−1

fV

s′−1

P(fE)

What about vertices where fV is undefined?

17 / 30

Flag Surjectivity

Flag surjectivity = lax commutation of the square:

V V ′

P(E) P(E ′)

fV

s−1 s′−1≥

P(fE)

17 / 30

Graphs with Circles

Objects are total graphs, as defined above

Morphisms are (fE , fV) where

• fE is total

• the flag map is surjective
(no increase of flags at a vertex)

+ other conditions

Graph embeddings are

• flag injective (no decrease of flags at a vertex)

+ other conditions

It’s a category!

18 / 30

Remark on Circles

• might have edges without source or target: loops

• but flag surjectivity is defined on vertices

• edge set is E + O, with O being the circles

• maybe we need more structure for loops?

19 / 30

Rewriting for Graphs with Circles

The category of graphs is not adhesive!
But it has enough adhesive properties for the case we’re interested in:

Boundary Graph

= boundary vertex and dual boundary vertex, connected by edges

20 / 30

Partitioning Spans

partition a graph into two (connected) parts: context and subgraph

Theorem
Pushouts of partitioning spans exist, and all morphisms in the pushout
square are embeddings.

21 / 30

Partitioning Spans

partition a graph into two (connected) parts: context and subgraph

Theorem
Pushouts of partitioning spans exist, and all morphisms in the pushout
square are embeddings.

21 / 30

Boundary Embeddings

for constructing pushout complements which give rise to partitioning
spans

Theorem
Pushout complements of boundary embeddings exist and are unique (up
to degeneracies).

22 / 30

Boundary Embeddings

for constructing pushout complements which give rise to partitioning
spans

Theorem
Pushout complements of boundary embeddings exist and are unique (up
to degeneracies).

22 / 30

The Same Example of DPO Rewriting

Remember this example?

23 / 30

The Same Example of DPO Rewriting

Let’s add some boundary regions . . .

23 / 30

The Same Example of DPO Rewriting

. . . and use their representative vertices

23 / 30

Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution
and a non-plane solution

24 / 30

Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution

and a non-plane solution

24 / 30

Let’s talk about Loops!

problem: construct a pushout complement of a loop

has a plane solution
and a non-plane solution

24 / 30

Category of Rotation Systems

obj: graphs + cyclic ordering of flags for all vertices

arr: same as graphs + order preservation condition

Example

V V ′

P(E) P(E ′)

fV

t−1 t′−1≥

P(fE)

V V ′

CList(E) CList(E ′)

fV

t−1 t′−1≥

CList(fE)

Theorem
Pushouts and pushout complements are the same as in the underlying
category of graphs.

25 / 30

The Operad of Plane Graphs

An instance of David Spivak’s Operad of Wiring Diagrams4

g : 0 7→ 2 f : (0 7→ 2, 2 7→ 1) → (1 7→ 2)

4Spivak, The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and plug-and-play circuits.

26 / 30

The Operad of Plane Graphs

Composition corresponds to substitution
(aka rewriting in the cateogry of rotation systems):

f ◦1 g : (2 7→ 1) → (1 7→ 2)

27 / 30

Implementation

Developing a data type of these kind of graphs in the dependently-typed
programming lagnguage Agda5.

• define graphs inductively along their spanning trees

• store edges not in the spanning tree in a structure alongside it

• interested in notions of focussing and context graph

5MA and McBride, “A Datatype of Planar Graphs (Abstract)”.

28 / 30

Implementation: Planar Graphs

• structure of the additional edges determine the surface

• can contract the spanning tree and observe

• in the plane case, a stack is exactly what we need!

What about higher genus graph embeddings?

29 / 30

Summary

• non-symmetric string diagrams are interesting

• fix inputs and outputs to control topology – boundary vertices

• restrict your rewrite rules to meaningful cases

• category of graphs with circles extendable to rotation systems

Ideas

• What about surface-embedded loops?

• What about more complex boundary graphs?

• What about implementing higher genus graphs?

Thank You for Your Attention!

30 / 30

Bibliography

Baez, John C. and Kenny Courser. Structured Cospans. 2020. arXiv: 1911.04630
[math.CT].

Bonchi, Filippo et al. “Confluence of Graph Rewriting with Interfaces”. In:
Programming Languages and Systems. Ed. by Hongseok Yang. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 141–169.

Lack, Stephen and Pawe l Sobociński. “Adhesive categories”. In: International
Conference on Foundations of Software Science and Computation Structures.
Springer. 2004, pp. 273–288.

MA and Conor McBride. “A Datatype of Planar Graphs (Abstract)”. In: 28th
International Conference on Types for Proofs and Programs. 2022.

Spivak, David I. The operad of wiring diagrams: formalizing a graphical language
for databases, recursion, and plug-and-play circuits. 2013. arXiv: 1305.0297
[cs.DB].

https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/1305.0297
https://arxiv.org/abs/1305.0297

Appendix: Examples

Valid morphisms:

Embeddings:

Appendix: Non-Examples

These aren’t morphisms in the category:

Appendix: Definition Graphs with Circles

A morphism f : G → G ′ between two graphs with circles consists of two (partial) functions
fV : V ⇀ V ′ as above, and fA : A → A′, satisfying the conditions listed below. Note that any
such fA factors as four maps,

fE : E → E ′ fEO : E → O′

fOE : O → E ′ fO : O → O′

The following conditions must be satisfied:

• fA : A → A′ is total;

• the component fOE : O → E ′ is the empty function;

• the pair (fV , fE) forms a flag surjection between the underlying graphs.

If, additionally, the following three conditions are satisfied, we call the morphism an embedding:

• fV : V ⇀ V ′ is injective;

• the component fO is injective;

• the pair (fV , fE) forms a flag bijection between the underlying graphs.

