
Control Flow as a Contour of Data Flow

Malin Altenmüller, Dan Ghica

Workshop on Diagrammatic Methods
24 January 2023



Control Flow as a Contour of Data Flow

Data Flow:

• data dependency between programs

• information states

• track definition and usage of variables

Control Flow

• order of execution of program fragments

• control flow analysis:
important processing step for compiler optimisation, expose dead
code fragments

1 / 17



Control Flow as a Contour of Data Flow

Data Flow:

• data dependency between programs

• information states

• track definition and usage of variables

Control Flow

• order of execution of program fragments

• control flow analysis:
important processing step for compiler optimisation, expose dead
code fragments

1 / 17



Control Flow Graphs

nodes: program blocks
edges: control flow

• disadvantage: graphs can be very big, algorithms on them are hard

• coming up: proposal for a different representation of control flow

2 / 17



Control Flow Graphs

nodes: program blocks
edges: control flow

• disadvantage: graphs can be very big, algorithms on them are hard

• coming up: proposal for a different representation of control flow

2 / 17



Tree Contours1

• tree contours representing context-free languages

• trees represent derivations of a word

• linear contour around a derivation tree

1Melliès and Zeilberger, “Parsing as a lifting problem and the Chomsky-Schützenberger representation theorem”.

3 / 17



Abstract Syntax Generators

• imperative programs – variables, functions, control structures

• wires are variables

• multiple inputs, one output

• represented as a species: elements with multiple inputs and one
output, e.g. while : 2→ 1

4 / 17



Composing Generators

• composition is taking the free operad on the species

• amounts to building (partial) trees from the generators

5 / 17



Control Flow Contours(1)

given an operad, its generalised contour category consist of:

• objects: oriented colours of the operad

6 / 17



Control Flow Contours(1)

given an operad, its generalised contour category consist of:

• objects: oriented colours of the operad

6 / 17



Control Flow Contours(1)

given an operad, its generalised contour category consist of:

• morphisms of the form − → +, generated by colours and indices

7 / 17



Control Flow Contours – Example 1

While loop:

8 / 17



Control Flow Contours – Example 1

While loop:

8 / 17



Control Flow Contours – Example 1

While loop:

8 / 17



Control Flow Contours – Example 1

While loop:

8 / 17



Control Flow Contours – Example 1

While loop:

8 / 17



Control Flow Contours(2)

• edges represent control flow, for each of the generators

• contour is neither linear, nor ordered

• overapproximation of control flow

9 / 17



Contours compose!

10 / 17



Contours compose!

10 / 17



Control Flow Contours – Example 2

Boolean AND:

11 / 17



Control Flow Contours – Example 2

Boolean AND:

11 / 17



Control Flow Contours – Example 2

Boolean AND:

11 / 17



Control Flow Contours(3)

given an operad, its generalised contour category consist of:

• objects: oriented colours of the operad

• morphisms of the form − → +, generated by colours and indices

This definition gives rise to a functor C : Operad→ Cat.

12 / 17



Constructing Contours and back

Here’s a functor J : Cat→ Operad:

• colours are pairs of objects

• n-ary maps are sets of morphisms

13 / 17



Constructing Contours and back

Here’s a functor J : Cat→ Operad:

• colours are pairs of objects

• n-ary maps are sets of morphisms

13 / 17



Constructing Contours and back

Here’s a functor J : Cat→ Operad:

• colours are pairs of objects

• n-ary maps are sets of morphisms

13 / 17



Adjunction

• The contour is the left adjoint of the interior:
Operad(O,J (C)) ∼= Cat(C(O),C)

• Actually, it’s a local left adjoint:

O C(O)

J (C) C

f g

for every map f : O → J (C), there exists an object D ′ ∈ Cat, a
map g : D ′ → C and a map f0 : O → JD ′, such that f = J (g)f0.

• Take D ′ to be the contour of O according to f .

14 / 17



Adjunction

• The contour is the left adjoint of the interior:
Operad(O,J (C)) ∼= Cat(C(O),C)

• Actually, it’s a local left adjoint:

O C(O)

J (C) C

f g

for every map f : O → J (C), there exists an object D ′ ∈ Cat, a
map g : D ′ → C and a map f0 : O → JD ′, such that f = J (g)f0.

• Take D ′ to be the contour of O according to f .

14 / 17



Adjunction

• The contour is the left adjoint of the interior:
Operad(O,J (C)) ∼= Cat(C(O),C)

• Actually, it’s a local left adjoint:

O C(O)

J (C) C

f g

for every map f : O → J (C), there exists an object D ′ ∈ Cat, a
map g : D ′ → C and a map f0 : O → JD ′, such that f = J (g)f0.

• Take D ′ to be the contour of O according to f .

14 / 17



From Syntax to Graph Rewriting Semantics2

• token = current “focus”

• token moves or triggers a rewrite

• objects in the contour: potential token positions

• morphisms in the contour: potential token movement

2Muroya and Ghica, “The Dynamic Geometry of Interaction Machine: A Token-Guided Graph Rewriter”.

15 / 17



From Syntax to Graph Rewriting Semantics2

• token = current “focus”

• token moves or triggers a rewrite

• objects in the contour: potential token positions

• morphisms in the contour: potential token movement

2Muroya and Ghica, “The Dynamic Geometry of Interaction Machine: A Token-Guided Graph Rewriter”.

15 / 17



Contours for Terms

• how does control flow translate from graphs to terms?

• terms have holes for variables3

3Spivak, “The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and
plug-and-play circuits”.

16 / 17



Contours for Terms

• how does control flow translate from graphs to terms?

• terms have holes for variables3

3Spivak, “The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and
plug-and-play circuits”.

16 / 17



Contours for Terms

• how does control flow translate from graphs to terms?

• terms have holes for variables3

3Spivak, “The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and
plug-and-play circuits”.

16 / 17



Summary

• new syntax for control flow, based on abstract syntax graph

• compositional, simpler analysis possible

• based on the notion of contour category

• translation to token-based graph rewriting semantics

• translation from trees to terms

• what about: hypergraphs, more complex vertex/colour types?

Thank You for Your Attention!

17 / 17



Summary

• new syntax for control flow, based on abstract syntax graph

• compositional, simpler analysis possible

• based on the notion of contour category

• translation to token-based graph rewriting semantics

• translation from trees to terms

• what about: hypergraphs, more complex vertex/colour types?

Thank You for Your Attention!

Thoughts or questions? malin.altenmuller@huawei.com

17 / 17



Summary

• new syntax for control flow, based on abstract syntax graph

• compositional, simpler analysis possible

• based on the notion of contour category

• translation to token-based graph rewriting semantics

• translation from trees to terms

• what about: hypergraphs, more complex vertex/colour types?

Thank You for Your Attention!

17 / 17



Summary

• new syntax for control flow, based on abstract syntax graph

• compositional, simpler analysis possible

• based on the notion of contour category

• translation to token-based graph rewriting semantics

• translation from trees to terms

• what about: hypergraphs, more complex vertex/colour types?

Thank You for Your Attention!

17 / 17



References

Melliès, Paul-André and Noam Zeilberger. “Parsing as a lifting problem and the
Chomsky-Schützenberger representation theorem”. In: MFPS 2022 - 38th
conference on Mathematical Foundations for Programming Semantics. Ithaca, NY,
United States, July 2022. url:
https://hal.archives-ouvertes.fr/hal-03702762.

Muroya, Koko and Dan R. Ghica. “The Dynamic Geometry of Interaction Machine: A
Token-Guided Graph Rewriter”. In: Logical Methods in Computer Science Volume
15, Issue 4 (Oct. 2019). doi: 10.23638/LMCS-15(4:7)2019. url:
https://lmcs.episciences.org/5882.

Spivak, David I. “The operad of wiring diagrams: formalizing a graphical language for
databases, recursion, and plug-and-play circuits”. In: CoRR abs/1305.0297 (2013).
arXiv: 1305.0297. url: http://arxiv.org/abs/1305.0297.

Image CFG from:
Al-Ekram, R. & Kontogiannis, Kostas. (2004). Source code modularization using
lattice of concept slices. 195- 203. 10.1109/CSMR.2004.1281420.

https://hal.archives-ouvertes.fr/hal-03702762
https://doi.org/10.23638/LMCS-15(4:7)2019
https://lmcs.episciences.org/5882
https://arxiv.org/abs/1305.0297
http://arxiv.org/abs/1305.0297

	References

