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Control Flow as a Contour of Data Flow

Data Flow:

• data dependency between programs

• information states

• track definition and usage of variables

Control Flow

• order of execution of program fragments

• control flow analysis:
important processing step for compiler optimisation, expose dead
code fragments
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Control Flow Graphs

nodes: program blocks
edges: control flow

• disadvantage: graphs can be very big, algorithms on them are hard

• coming up: proposal for a different representation of control flow
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Tree Contours1

• tree contours representing context-free languages

• trees represent derivations of a word

• linear contour around a derivation tree

1Melliès and Zeilberger, “Parsing as a lifting problem and the Chomsky-Schützenberger representation theorem”.
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Abstract Syntax Generators

• imperative programs – variables, functions, control structures

• wires are variables

• multiple inputs, one output

• represented as a species: elements with multiple inputs and one
output, e.g. while : 2→ 1
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Composing Generators

• composition is taking the free operad on the species

• amounts to building (partial) trees from the generators
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Control Flow Contours(1)

given an operad, its generalised contour category consist of:

• objects: oriented colours of the operad
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Control Flow Contours – Example 1

While loop:
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Control Flow Contours(2)

• edges represent control flow, for each of the generators

• contour is neither linear, nor ordered

• overapproximation of control flow
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Contours compose!
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Control Flow Contours – Example 2

Boolean AND:
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Control Flow Contours(3)

given an operad, its generalised contour category consist of:

• objects: oriented colours of the operad

• morphisms of the form − → +, generated by colours and indices

This definition gives rise to a functor C : Operad→ Cat.
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Constructing Contours and back

Here’s a functor J : Cat→ Operad:

• colours are pairs of objects

• n-ary maps are sets of morphisms
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Adjunction

• The contour is the left adjoint of the interior:
Operad(O,J (C)) ∼= Cat(C(O),C)

• Actually, it’s a local left adjoint:

O C(O)

J (C) C

f g

for every map f : O → J (C), there exists an object D ′ ∈ Cat, a
map g : D ′ → C and a map f0 : O → JD ′, such that f = J (g)f0.

• Take D ′ to be the contour of O according to f .
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From Syntax to Graph Rewriting Semantics2

• token = current “focus”

• token moves or triggers a rewrite

• objects in the contour: potential token positions

• morphisms in the contour: potential token movement

2Muroya and Ghica, “The Dynamic Geometry of Interaction Machine: A Token-Guided Graph Rewriter”.
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Contours for Terms

• how does control flow translate from graphs to terms?

• terms have holes for variables3

3Spivak, “The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and
plug-and-play circuits”.
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Summary

• new syntax for control flow, based on abstract syntax graph

• compositional, simpler analysis possible

• based on the notion of contour category

• translation to token-based graph rewriting semantics

• translation from trees to terms

• what about: hypergraphs, more complex vertex/colour types?

Thank You for Your Attention!
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Thank You for Your Attention!

Thoughts or questions? malin.altenmuller@huawei.com
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