^A Category of Plane Graphs with Substitution and Pattern Matching

Malin Altenmiller

CATNIP 19/11/24

malin.altenmuller@ed.ac.uk maltenmuller.github.io

String Diagrams

- graphical syntax for monoidal categories
- composition & tensor product straight forward

- represent computational processes
- reasoning by rewriting

 $\overline{}$

String Diagrams specific properties in the MC translate to their diagrams

- symmetric monoidal categories (SMC)

only connectivity matters

- interested in the non-symmetric case:
	- · quantum circuits: Swap is non-trivial
	- · printing circuits: swap is not possible
	- · generalises symmetric & braided case

- $-$ translation: wires \rightarrow edges, boxes \rightarrow vertices
- graphs as combinatorial representation

Graphs of non-symmetric diagrams?

- reasoning by graph rewriting
- preserve vertex arity!

- drawing of a graph onto a surface

plane

 $non-plane$

Theorem A rotation system uniquely determines a graph embedding. [1]

store the order of edges around each vertex

given ^a rewrite rule

An Example of DPO-Rewriting

rewrite rule as span with common boundary

construct context graph by pushout complement

An Example of DPO-Rewriting

construct final graph by pushout

need: pushouts, (unique) pushout complements, notion of embedding "adhesive" categories [2]

Standard Category of Graphs - graphs $G: E \xrightarrow{S} V$ - morphisms $G \rightarrow G'$ are pairs $f_E : E \rightarrow E'$
 $f_V : V \rightarrow V'$ $f_V: V \rightarrow$
 $E \xrightarrow{f_E} E$
 $S \downarrow S'$ (and similar for t)
 $V \rightarrow V'$ Such that

Remark: all graphs are drawn undirected here

Open Graphs

- processes have inputs and outputs
- diagrams can have holes

but

- morphisms of open graphs don't preserve the surface
- cannot assign rotation information to loose edges

- identify the outside of ^a graph
- attach input and output edges to it
- outside as ^a region of the graph
- contract to a single boundary vertex \blacksquare

10

Dual Boundary vertex

same idea for any holes in ^a graph

all graphs are total

 \rightarrow I can add rotation information to all edges

Requirements for Graph Morphisms

- vertex map needs to be partial

- edge map cannot be injective

What is the right notion of embedding?

Flags and Flag Maps

onnection points between vertices and their incident edges \rightarrow pairs (v,e)

 $f(1, 1)$ map (f_E, f_V) partial map induced by graph map

- characterise morphisms /embeddings on the flag map

start with the condition for standard graph morphisms

What about vertices with no edges attached?

Flag Surjectivity

condition on vertices, by considering the preimage

 $V \xrightarrow{f_V} V'$ S^{-1} \downarrow ρ (fe) \downarrow S^{-1}
 ρ (E) \rightarrow ρ (E)

What about vertices where fy is undefined?

45

Flag Surjectivity

Flag surjectivity = lax commutation of the square:

<u>16</u>

Graphs with Circles G

- objects are total graphs (as before)
- morphisms are (F_{E}, f_{V}) where
	- \cdot f_{E} is total
	- . the induced flag map is surjective
	- other conditions
- embeddings additionally are
	- flag injective
	- other conditions

 \mathcal{A}

 $\label{eq:2.1} \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})$

- this category of graphs is not adhesive! but it has enough adhesive properties in the case we're interested in

Boundary Graphs have an outside and ^a hole

split the graph into context and subgraph

 \mathcal{G} $\frac{2}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ eventurined on $\frac{1}{\sqrt{2}}$ | C $\frac{1}{2}$

defined on ∂ Cr defined on J

undefined on 2

Partitioning Spans

split the graph into context and subgraph

Theorem: In G pushouts of partitioning spans exist.

l_{v} undefined on J defined on 2 cy defined on $\overline{\partial}$

undefined on 2

$l_{\rm v}$ undefined on $\overline{\partial}$ defined on 2

m undefined on 2

$l_{\rm v}$ undefined on ∂ defined on

m undefined on 2

Theorem: In G pushout complements of boundary embeddings exist and are unique

20

Category of Rotation systems

- objects: graphs + cyclic ordering of flags for all vertices
- $-$ morphisms: same as G + order preservation condition

Proposition: Pushouts and pushout complements are the same as in the underlying category of graphs.

- wiring diagrams operad [4]: substitute diagram for special vertex

Operad of Plane Graphs

objects are rotations morphisms are plane graphs inputs are dual boundary vertices output is its boundary vertex ² $G: \overline{\partial}_{1},...,\overline{\partial}_{n} \vdash \partial$

composition is givenby substitution

Composition is Substitution

$$
G: \overline{\partial}_1 \dots \widehat{G_i}, \dots, \overline{\partial}_n \longmapsto \qquad H: \overline{\partial}_1 \dots \overline{\partial}_m \longmapsto
$$

- composition H . G is the pushout of the partitioning span

$$
G \leftarrow \partial_i \partial_i \longrightarrow H
$$

Example of Operad Composition

Co-Operad

objects are rotations morphisms are plane graphs input is its boundary vertex outputs are dual boundary vertices $P: \quad \partial \rightarrow \overline{\partial}_{n_1}...\overline{\partial}_{n_n}$

- composition is given by substitution

- co-operads are patterns the $\overline{\partial}_{i}$ are the pattern variables

Operad Cooperad Interaction

A match can fail if there is no such ^m

Example of ^a Match

Calculating the match ... amounts to calculating the pushout complement of the boundary embedding $\overline{\partial\overline{\partial}} \rightarrow P \rightarrow G$ (which exists!)

Example

- non symmetric monoidal categories are interesting
- represented by plane graphs
- introducing boundary vertices to avoid open graphs
- operad of graphs with substitution

co operad of patterns with substitution

interaction yields notion of pattern matching

Future work

- more than one hole for the operand cooperad part
- higher genus surfaces, non-orientable surfaces?
- more complex boundary graphs, e.g.:

- co-operads framework for patterns (& matching) in other contexts. Metaprogramming?

References

[1] Jonathan Gross, Thomas Tucker: Topological Graph Theory. 2001. [2] Steven Lack, Pawel Sobociński : Adhesive Categories. 2004. [3] Tom Leinster: Higher Operads, Higher Categories. 2004. $[4]$ David I. Spivak: The operad of wiring diagrams $[7 \cdot 7]$. 2013.

Appendix A - Graphs with Circles

Definition 1.18. A graph with circles is a 5-tuple $G = (V, E, O, s, t)$ where (V, E, s, t) is a total graph and O is a set of *circles*. For notational convenience we define the set of *arcs* as the disjoint union $A = E + O$.

A morphism $f: G \to G'$ between two graphs with circles consists of two (partial) functions $f_V: V \to V'$ as above, and $f_A: A \to A'$, satisfying the conditions listed below. Note that any such f_A factors as four maps,

$$
f_E : E \to E' \qquad f_{EO} : E \to O'
$$

$$
f_{OE} : O \to E' \qquad f_O : O \to O'
$$

The following conditions must be satisfied:

1. $f_A: A \rightarrow A'$ is total

2. the component $f_{OE}: O \rightarrow E'$ is the empty function

3. the pair (f_V, f_E) forms a flag surjection between the underlying graphs in **B**.

If, additionally, the following three conditions are satisfied, we call the morphism an embedding:

- 4. $f_V: V \rightarrow V'$ is injective,
- 5. the component f_O is injective,
- 6. the pair (f_V, f_E) forms a flag bijection between the underlying graphs in **B**.

a morphism in G that is flag-surjective but not flag-injective:

