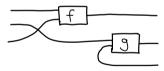
A DATA TYPE OF INTRINSICALLY PLANE GRAPHS

Malin Altenmüller

BCTCS 2025

String diagrams (1)

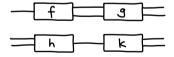
- Interested in monoidal categories with
 - sequential composition: $f \circ g$
 - parallel composition: $f \otimes g$.
- Nice graphical syntax of string diagrams:



String diagrams (2)

• Properties of the category translate to its diagrams, e.g. symmetric vs. braided monoidal categories:

• Some equations hold automatically, e.g. interchange law $(f \otimes h) \ \S \ (g \otimes k) = (f \ \S \ g) \otimes (h \ \S \ k)$:



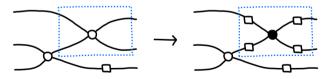
Why graphs?

• Formalise string diagrams and their rewriting theory.

Definition

A graph G is a tuple (V, E, s, t) with a set of vertices V, a set of edges E, source and target functions $s, t : E \to V$.

• Rewriting theory for string diagrams becomes graph rewriting:



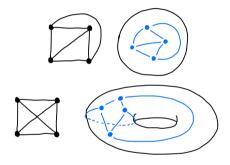
Why plane graphs?

- Monoidal categories with specific topological properties: no crossing wires allowed!
- Generalisation of symmetric and braided monoidal categories.
- Certain theories do not come with a builtin SWAP operation.

Graphs are not suitable, we need plane graphs!

Surface-embeddings of graphs

• Drawing of a graph onto a surface (without edges crossing):



 \bullet A surface-embedding is characterised by its $\it faces.$

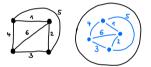
Rotation systems

= order of edges around each vertex.

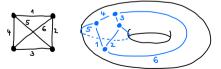
Theorem

A rotation systems determines a graph's surface-embedding.

Plane graph:



Toroidal graph:



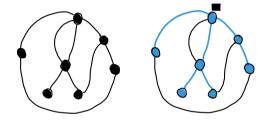
Plane graphs as a data type?

Goal: implementation of plane graphs and their rewriting theory in Agda

• Composition is really nice on paper, but not in a term based tool:

- Graphs are cyclic, but we would like an inductive type.
- How to enforce the planarity?

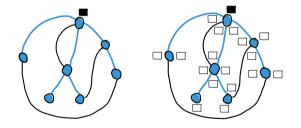
Spanning trees to the rescue



 ${\rm graph} = {\rm spanning} \ {\rm tree} \ ({\rm incl.} \ {\rm root}) \, + \, {\rm non\text{-}tree} \ {\rm edges}$

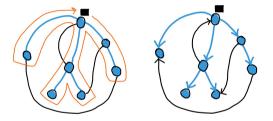
An inductive data type

graph = spanning tree (incl. root) + non-tree edges + corners



An ordered data type

• A graph is the clockwise traversal of its spanning tree:



 $\bullet\,$ Edge set E is split into tree edges and non-tree edges.

Indexing type

Lemma

In a clockwise traversal, corners and edges always alternate.

• Store this information in a simple data type:

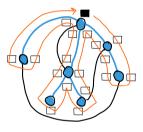
data Next : Set where

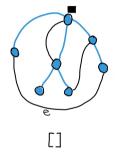
edge : Next corner : Next

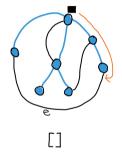
• Traversal of the tree is guided by an indexing type:

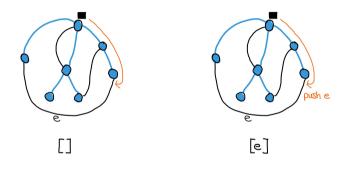
 $\mathsf{TravTy}\,:\,\mathsf{Set}$

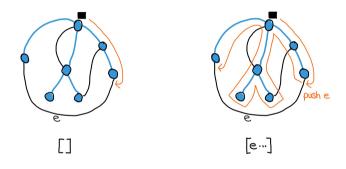
 $\mathsf{TravTy} = \mathsf{List}\ E \,\times\, \mathsf{Next}$

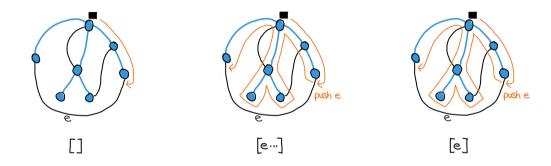


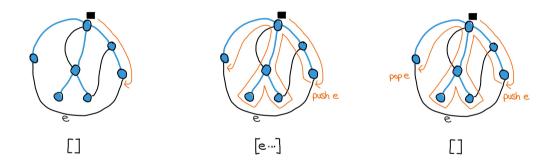


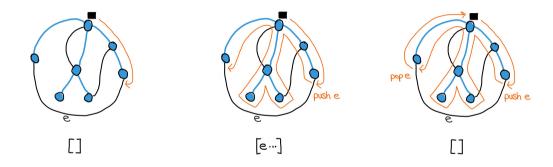






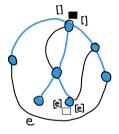






Indexing type – example

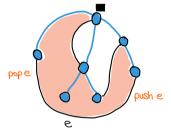
• Every corner is indexed by a stack of edges characterising its face:



• A plane graph has index ([], corner) ([], corner).

Stack structure determines faces

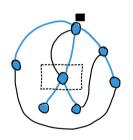
• Every non-tree edges closes a face of the graph embedding:

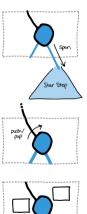


 \bullet We can calculate the faces of the embedding by observing the changes of the edge stack.

Possible steps in the traversal

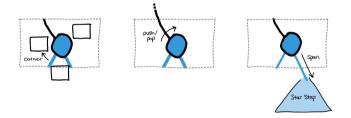
One step in the clockwise traversal of the spanning tree:





The type of steps

```
\begin{array}{l} \mathsf{data} \ \mathsf{Step} : \ \mathsf{TravTy} \to \mathsf{TravTy} \to \mathsf{Set} \ \mathsf{where} \\ \mathsf{corner} : \ (c : C) \to \mathsf{Step} \ (es \ , \ \mathsf{corner}) \ (es \ , \ \mathsf{edge}) \\ \mathsf{push} : \ (e : E) \to \mathsf{Step} \ (es \ , \ \mathsf{edge}) \ (e \ , - \ es \ , \ \mathsf{corner}) \\ \mathsf{pop} : \ (e : E) \to \mathsf{Step} \ (es \ , - \ es \ , \ \mathsf{edge}) \ (es \ , \ \mathsf{corner}) \\ \mathsf{span} : \ (e : E) \ (v : V) \to \mathsf{Star} \ \mathsf{Step} \ (es \ , \ \mathsf{corner}) \ (es' \ , \ \mathsf{edge}) \to \mathsf{Step} \ (es \ , \ \mathsf{edge}) \ (es' \ , \ \mathsf{corner}) \end{array}
```



A Graph is a sequence of steps: Star Step ([], corner) ([], corner).

Planarity

Theorem

A stack of non-tree edges ensures planarity of a graph.

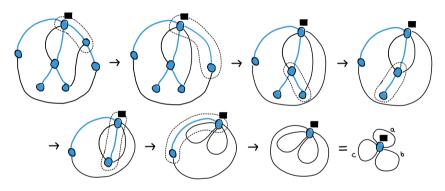
To prove this, we use the following fact:

Lemma

Contracting a plane subgraph does not change the genus of a graph's embedding.

- Plan: contract the entire spanning tree of a graph.
- All the surface information is stored in the non-tree edges of a graph.

Contracting the spanning tree



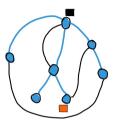
Non-tree edges form a well bracketed word abbcca. (cf. context-free grammars, Dyck language,...)

Zippers¹ for graphs

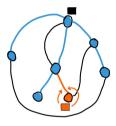
- Structure to focus on a sector in the graph.
- Useful to to highlight a certain subgraph (and rewrite it).
- Zipper = path to the focus + sibling structures alongside it.
- Store the path bottom-up: fast access to nearby elements.
- Mimic a cursor structure: forwards/backwards lists everywhere.

 $^{^1\}mathrm{Huet},\ \mathrm{``The\ Zipper''}.$

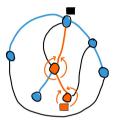
• Start at the focus:



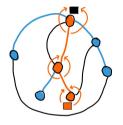
• Move up along the path one step at a time:

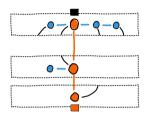


• Move up along the path one step at a time:



• Full path defines a *layer* structure:





 \bullet Continue using the stack structure to ensure planarity:

record ZipTy : Set where

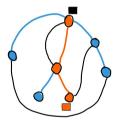
 ${\sf field\ ahead}:\ {\sf List}\ E$

here : Next

 ${\bf behind}: \ {\bf List} \ E$

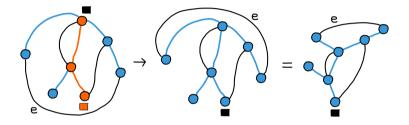
Re-rooting the tree

- Start from a zipper of a graph.
- Idea: move the spanning tree's root to the sector in focus:



 $\bullet\,$ This changes the order of traversal of the spanning tree.

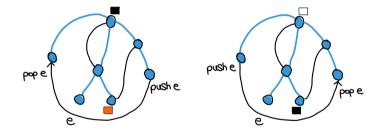
Goal: turn the tree upside down



 \bullet Compute the new traversal order: edge stack structure has to change.

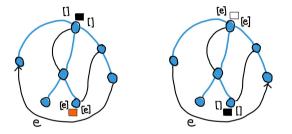
Turn non-tree edges

Edge e has to be turned around in the re-rooting operation,...



Turn non-tree edges

... therefore the indices at the root and focus are exchanged:



Theorem

 $Re\text{-}rooting\ preserves\ planarity.$

Proof: by very careful turning of non-tree edges during the operation.

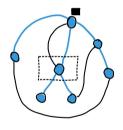
Making planarity intrinsic

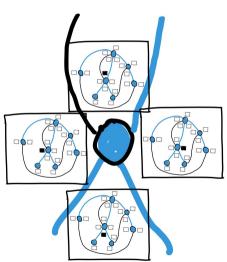
- Planarity is part of the data type of graphs.
- Any element of this type is by definition plane.
- Any operation defined on this type preserves planarity by definition.
- Use it to implement rewriting of subgraphs (planarity preserving).

More ideas (1)

Equip corners with data: the graph re-rooted to here. $\,$

This gives a context comonad 2 .





 $^{^2\}mathrm{Uustalu}$ and Vene, "Comonadic Notions of Computation".

More ideas (2)

What about different surfaces from the plane? Higher genus surfaces? Non-orientable surfaces? What to use instead of a stack?

(valid and non-valid embedding on the torus $\rightarrow)$

Thank you for your attention!

A DATA TYPE OF INTRINSICALLY PLANE GRAPHS

Malin Altenmüller

malin.altenmuller@ed.ac.uk

Huet, Gérard P. "The Zipper". In: *J. Funct. Program.* 7.5 (1997), pp. 549-554. URL: http://journals.cambridge.org/action/displayAbstract?aid=44121.

Uustalu, Tarmo and Varmo Vene. "Comonadic Notions of Computation". In: Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science, CMCS 2008, Budapest, Hungary, April 4-6, 2008. Ed. by Jirí Adámek and Clemens Kupke. Vol. 203. Electronic Notes

in Theoretical Computer Science 5. Elsevier, 2008, pp. 263–284. DOI: 10.1016/j.entcs.2008.05.029. URL: https://doi.org/10.1016/j.entcs.2008.05.029.