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Context

String diagrams model strict monoidal categories: Structural equations do
not hold computational content. In a proof assistant like Agda, modelling
this behaviour implicitly is highly non-trivial.

Quantum Computing via Rig Categories

Quantum programs can be modelled by rig categories (together with certain
effects) which contain a large number of coherence equations.

Example 1: Interchange Law

(f # g)⊗ (h # k) = (f ⊗ h) # (g ⊗ k)
Both sides of this equation are represented by
the same string diagram:

How to model this in the formalisation?

Goal

Agda implementation modelling string diagrams in which all coherence isomorphisms are implicit.

Agda’s Rewrite Rules

• Adding user-specified definitional equalities to Agda.

• Rules are automatically applied wherever possible.

• Plan: add all coherence equations as rewrite rules.

Coherence Isomorphisms as Rewrite Rules

assocr : {A B C : Ob} → (A ⊗ B) ⊗ C ↔ A ⊗ B ⊗ C

unitl : (A : Ob) → (one ⊗ A) ↔ A

unitr : (A : Ob) → (A ⊗ one) ↔ A

{-# REWRITE assocr unitl unitr #-}

Example 2: Implementation of a Property of the Language
√
Π

lem : ctrl z ◦ s ⊗C id two ⇔ (s ⊗C id two) ◦ ctrl z

lem = ctrl (p -one) ◦ s ⊗C id two – (1)

=[ cong (λ x → x ◦ s ⊗C id two) (sym (A-1 -one)) ]>

swap ◦ ctrl (p -one) ◦ swap ◦ (s ⊗C id two) – (2)

=[ cong (λ x → swap ◦ ctrl (p -one) ◦ x ) (swap⊗C {c1 = s}{id two}) ]>
swap ◦ ctrl (p -one) ◦ (id two ⊗C s) ◦ swap – (3)

=[ cong (λ x → swap ◦ x ◦ swap) (sym (A-2 -one i)) ]>

swap ◦ (id two ⊗C s) ◦ ctrl z ◦ swap – (4)

=[ cong (λ x → x ◦ ctrl z ◦ swap) (swap⊗C {c1 = id two}{s}) ]>
(s ⊗C id two) ◦ swap ◦ ctrl z ◦ swap – (5)

=[ cong (λ x → (s ⊗C id two) ◦ x ) (A-1 -one) ]>

(s ⊗C id two) ◦ ctrl z [] – (6)

Proof by Hand

The formalisation of the proof of an example
property of

√
Π (see left) has exactly as many

steps as the proof on paper:

Ctrl Z ◦ (S⊗ Id) (1)

= SWAP ◦ Ctrl Z ◦ SWAP ◦ (S⊗ Id) (2)

= SWAP ◦ Ctrl Z ◦ (Id⊗ S) ◦ SWAP (3)

= SWAP ◦ (Id⊗ S) ◦ Ctrl Z ◦ SWAP (4)

= (S⊗ Id) ◦ SWAP ◦ Ctrl Z ◦ SWAP (5)

= (S⊗ Id) ◦ Ctrl Z (6)

Example 3: Triangle Equation

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

αA,1,B

ρA⊗1B 1A⊗λB

Triangle Equation in Agda

triangle-eq : {A B : Ob} → unit⊗r A ⊗ id B

⇔ assoc⊗r {A}{one}{B} # (id A ⊗ unit⊗l B)

triangle-eq = id

Alternative Solution

Instead, we may specify coherence isomorphisms as propositional equalities: This introduces explicit
equations, but we can use Agda’s metatheory to apply them automatically.

assocr’ : {A B C : Ob} → (A ⊗ B) ⊗ C ≡ A ⊗ (B ⊗ C )

Contact

malin.altenmuller@ed.ac.uk


