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Introduction Planar graphs are subject of interest not only in graph theory [7, 6], but also in
defining syntaxes for monoidal categories [10] with specific topological properties, for example
diagrams for quantum circuits where crossing wires is a non-trivial operation [4]. We present
work on an intrinsically typed data structure of planar graphs, implemented in Agda.

A graph is planar if it can be drawn on a sphere without any edges crossing. We are working at
the level of the drawing, so graphs are actually plane graph embeddings. A graph embedding
is uniquely defined by an edge ordering around each of its vertices, called a rotation system [5].

Graphs are Decorated Trees The graphs we describe are con-

nected, and may contain self-loops at a vertex as well as multiple

edges in parallel. We define graphs inductively by using one of their

spanning trees as a skeleton and storing the remaining edges along-

side [2]. Our graphs have labelled edges, but also contain data in

sectors, which are regions near vertices, subdivided by their inci- ~'®

dent edges. Sectors are also the places within a graph we can point Py ®
at, or move to. The example on the right shows the spanning tree of g

the graph in blue, and its sectors as boxes, with a specially marked

root sector. The data structure represents the traversal of a graph

in order, starting from the root, working clockwise round the spanning tree, following tree edges
and passing non-tree edges on the way. Arrowheads indicate the order of traversal (the graph
itself is undirected).

At each Step in the traversal we either encounter the next sector or an edge; these two always
alternate. When visiting a tree edge we ask for the subtree attached to it. The first time we
meet each non-tree edge, we push its label onto a stack, popping when we find its other end.
A Step is indexed by the stack before and after, as well as an indicator of whether we expect
a sector (of type S) or an edge (of type E) at our next encounter. The stack is a list (with ,-
being cons), and spanning subtrees are the reflexive transitive closure Star of the Step relation.

data Step : (List E x SE) = (List E x SE) - Set where
sector : S = Step (es , sec)(es , edg)

push : (e : E) = Step ( es , edg)(e ,- es , sec)
pop : (e : E) » Step (e ,- es , edg)( es , sec)
span : E + V = Star Step (as , sec)(bs , edg)

- Step (as , edg)(bs , sec)

All together, a plane graph consists of a vertex and a Star Step ([] , sec)([] , sec): a
clockwise traversal around that vertex, starting from an empty stack and expecting the root
sector, visiting the rest of the tree, then finishing with an empty stack back at the root sector.

Proposition 1. A spanning tree together with a stack of additional edges defines a plane graph.

Proof Sketch. A spanning tree is plane by definition, thus the topological property is established
by the treatment of non-tree edges. By maintaining the stack in order of traversal, edges are
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popped in reverse order to being pushed, so no two edges cross. Effectively, we contract the
spanning tree to a single vertex with only self-loops, i.e. the non-tree edges. The graph is
planar when these self-loops form a well bracketed word [2]. O

There is more information yet in the stack indices: each edge e is boundary to a region of the
graph. Anything on top of e on the stack is local to the region, and once we have popped e we
know we have left the region. Observing the stack alone gives clues about where we currently
are in the graph, and which edges are local to the current subgraph.

Zippers The first graph operation we want is focussing to a specific position [1], then moving
the graph’s root to this position. We use zippers [8] for graphs in a bifunctor representation [9],
allowing us to transform sector data as we traverse clockwise.

Standard zippers for trees construct a path through the structure by successively choosing one
branch to move along, while storing its siblings alongside. In the case of graphs, siblings could
be trees but also stack operations. Each layer in the path stores a forwards list of steps ahead
in the tree and a backwards list of steps behind (i.e. between the arrival point and the current
position). The zipper itself is a sequence of layers surrounding the sector in focus. The left
example shows in red the path from sector s back to the root. At each vertex along the path
the curved arrows depict the backwards and forwards sibling lists:
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Re-rooting a graph to a zipper’s sector-in-focus involves rotating the traversal order of the
spanning tree while keeping track of the direction of the non-tree edges.
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Proposition 2. Re-rooting a planar graph returns a planar graph.

Proof Sketch. The spanning tree is traversed in a different order, but structurally unchanged.
Some of the additional edges have to be turned in the process of moving the root. In the original
graph, these edges were pushed before we arrive at the new root, and popped after, they were
exactly the index of the new root. When re-rooting, each of these edges will change its direction
and the order of edges on the stack will be reversed, thus planarity is maintained. O

In the left example, the stack operations for edge e are explicitly marked. The stack at
segment s is (e ,- []). The right example show the result of the re-rooting operation, with s
now being the root (with index [1), and the stack operations of e interchanged.

A Context Comonad We define graphs as containers. Sectors are places for data, as well
as places to view the graph from. We obtain a context comonad [11] whose counit projects
the root sector data and whose comultiplication decorates each sector with the graph re-rooted
to that sector. The graph stays the same, with the order of edges around vertices fixed, but
we redirect its spanning tree, depending on which sector is root. In future work we intend to
decorate each push and pop with the graph obtained by following their non-tree edge, allowing
convenient but read-only graph traversal [3].
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