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We introduce categorical structure for plane graphs, which represent non-symmetric monoidal
categories where swaps of wires are not permitted. We define notions of boundary graph and
partitioning span, which capture exactly the situations in which we want to apply rewrite rules.
We show that the necessary properties for double pushout rewriting are met by these structures.
From the notion of graph we briefly summarize how we construct the category of rotation systems
on top of the category of graphs, enabling topology preserving rewriting of graphs.

Introduction

String diagrams [14] are a graphical formalism to reason about monoidal categories. Equational
reasoning in symmetric string diagrams can be implemented as graph or hyper-graph rewriting
subject to various side conditions to capture the precise flavour of the monoidal category intended
[4, 5, 6, 11, 2, 1]. In this work we address the non-symmetric setting. Abstractly, this more
general setting can capture both the symmetric case and the braided monoidal one, admitting
the possibility to reason about a larger class of theories. A more practical motivation comes from
the area of quantum computing, where string diagrams are often used to model quantum circuits
[3], their connectivity restrictions imposed by the qubit architecture require a theory without
implicit SWAP gates.

We introduce a category of planar graphs and explain its properties suitable for double
pushout rewriting [8]. This is an important step towards formalising non-symmetric string
diagrams and their rewriting theory.

Plane Graphs

By plane graph we are referring to an embedding of a graph into the plane (or, equivalently, onto
a sphere), also known as map.

Diagrams with input and outputs can be characterised as open graphs, which themselves we
represent by graphs with boundary vertices: we connect all inputs and outputs to an additional
vertex (the graph’s boundary vertex dG), preserving their order.

oG

Combinatorically, embeddings of graphs into surfaces can be represented by rotation systems,
which store for each vertex its order of edges incident. Rotation systems determine the embedding
of a graph on a surface [10, 7, 9]. (Rotation systems in general can accommodate graphs embedded
in any orientable surface, not merely the plane. Though at this moment we are only addressing
the plane case.)
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A Category for Plane Graphs

We define a category of directed graphs which will serve as the underlying category for rotation
systems. It is not plane by default, but designed to accommodate and enforce topology restrictions
by adding rotation systems on top of graphs at a later point.

A total graph is a functor G : (e = o) — Set. Concretely, a graph is a pair of functions
assigning source and target vertices to edges.
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A morphism of graphs is a pair of maps fy, fg such that the following squares commute.
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To be able to replace the boundary vertex with a context, the notion of morphism has to
admit partial vertex maps. This comes with two challenges, the first one being to actually
represent these partial maps. We are moving towards the category of partial graphs and maps
[¢ =% o, Pfn], though this is not quite enough. Commutation of the corresponding squares in this
category is strict, meaning it includes equality of the domains of definition. We address this issue
by using the poset enrichment of Pfn,and work in the category [ = o, Pfn|< of functors and lax
natural transformations:
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While the lax category [e =% o, Pfn]< is better than the previous attempt, it does not meet
all of our requirements. Because vertices in these graphs represent morphisms in a monoidal
category, their arity has to be preserved by any morphism. As we allow for vertices without
any edges attached, a condition on edges alone does not suffice. We introduce an additional
requirement, on vertices:
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where s~! and ¢t~! are the preimage maps of s and ¢ respectively, and P is the powerset functor.

The second issue introduced by using placeholder vertices is concerning edges: If the context
graph includes a self loop (e.g. a cup or cap), substituting a graph into this context will connect
two of its edges with each other. This is where injectivity of the edge component of a morphism
has to fail. Contrarily, some form of injectivity on edges needs to be present, as we are interpreting
all morphisms as embeddings, and especially for preserving the arity of a vertex. Instead of
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injectivity on edges we use injectivity on the connection points, or flags, of an edge with its
source and target vertices.

Definition. A flag is a pair of an edge and a vertex (e,v) where v = s(e) or v =t(e). The flag
map induced by the graph map is the pair (fg, fv).

The flag map is a partial map, it is undefined on a (e,v), whenever fy is undefined on v. We
call the property of the flag map being injective flag injectivity.

Theorem. Flag injectivity, together with Equation 2 implies the preservation of vertex degree.

Proof Sketch. Preservation of vertex degree means |s™1(v)|+ [t~ 1(v)| = [s 7 (fv (v)|+ [t (fv (v))].
If fy is defined on a vertex v, the flag map is total on all flags incident to v. It also implies the
strict commutation of the diagrams in Equation 2. Because the flag map is injective, the number
of edges attached to v is preserved. O

We now have introduced all the necessary structure to define the category of graphs:

Definition. Let G be the category whose objects are total graphs G = (V, E,s,t) and whose
morphisms f: G — G’ consist of a partial injective function fy : V — V' and a total function
fe: E— E’, such that Equation 2 holds for morphisms and such that the flag map induced by
fE and fy is injective.

The additional requirements introduced with Equation 2 and the property of flag injectivity,
are all describing a subcategory of the lax functor category we started with:

Proposition. G is a subcategory of [ =% o, Pfn|<.

Categorical Properties for Rewriting

Double pushout rewriting [8] is an approach to formalising the equations of an equational theory
on monoidal categories by rewrite rules

L+t pB_",
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The rewrite rule asks for graph L to be replaced by R, while B ensures that both graphs have
the same connectivity. m : L — G is the embedding of L into G, and H is the resulting graph
from executing the rewrite L — R in G. C is the context graph: G with L removed. In the
algebraic graph literature the notion of adhesive category [12, 13| is commonly used, it is a class
of categories in which DPO rewriting behaves well.

The category of directed graphs G is very specific, and in general not adhesive. Therefore we are
going to restrict the type of rewrite rule to the specific case we are interested in and show, that
it meets the necessary adhesive properties, namely the existence of pushouts and the existence
and uniqueness of pushout complements.
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Figure 1: Example of a pushout of a partitioning span. (Directions of edges are omitted for
simplicity.)

Boundary Graphs and Partitioning

The boundary vertex of each graph stores its interface, its outer connectivity. When substituting
the graph into a bigger one, the boundary vertex gets replaced by the new environment. The
boundary vertex can be interpreted as the placeholder for a context graph.

We are continuing this interpretation when we describe the graphs in a DPO rewriting
diagram. Besides the boundary vertex which acts as a placeholder for the context, we introduce
the dual boundary vertex, being the placeholder for the graph itself. Using vertices as placeholders
does not only simplify our notion of graphs — all graphs are total —, but mainly allows for
imposing rotations on the vertices later on, preserving the topological properties of a graph.
With the notions of boundary graph and its dual, we now define the components for rewriting,
representing exactly the cases which we are interested in.

Definition. A boundary graph is a pair of vertices, the boundary vertex and its dual, connected

by a set of edges. A partitioning span is a pair of maps L L BSCing , where B is a boundary
graph, the vertex component [y is undefined on the boundary vertex, and cy is undefined on the
dual boundary vertex.

An example of a partitioning span and its pushout in G is depicted in Figure 1. The name
partitioning span arises from the fact that each of the maps out of the boundary graph replaces
one half of it. Hence each graph has an outside and an inside, connected via the edges present in
the boundary graph.

Theorem. In G, pushouts of partitioning spans exist.

Proof Sketch. The candidate for the pushout graph G is:
o Vo=Vo+VL)\ Vs,
e Eq=(EL+ E¢)/~ where ~ is the least equivalence relation such that (g(e) = cg(e) for

e € Fp,
sc(e), ife€ Ep,ly(sp(e)) defined
sp(e), ife€ Eg,cy(sple)) defined . .
o sg(e)= sé((e)) if e Ei eve(EBC( ) , similarly for ¢,
sp(e), ife¢ Ep,ec€ Ef,
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e my undefined on any v € Vp,

e gy undefined on any v € Vp.
O

For calculating the pushout complement, we introduce the corresponding structure to parti-
tioning spans. In this pair of edges, first the dual boundary vertex and then the boundary vertex
get replaced, meaning that we are defining a graph and then embedding it into a bigger one.

Definition. A boundary preserving embedding is a pair of maps B L L™ Gin G, where B
is a boundary graph, Iy, is undefined on the boundary vertex and my is undefined on the dual
boundary vertex.

Theorem. In G, pushout complements of boundary preserving embeddings exist and are unique.

Proof Sketch. The candidate for the pushout complement C' is:
o Vo= (VG+VB) \VL,
Ec =Eg\(EL\ EB),

] sgle), ifee Ep,ly(sp(e)) undefined
| sg(e), otherwise

, similarly for t¢,

cy is undefined on v € Vg whenever Iy (v) is defined,

gy is undefined on any v € Vp.

Towards a Category of Rotation Systems

The construction of the category of rotation systems is going to take two steps: firstly we are going
to equip the graphs in the above defined category with rotation information. This introduces an
ordering on the edges incident to a vertex, Equation 2 now holds on cyclic lists of edges rather
than sets. Secondly we apply the action of a forgetful functor, recovering rotation systems for
undirected graphs. The translation of the categorical properties required for rewriting through
both these steps works due to the way we set up the underlying category. Thus rewriting for
rotation systems makes sense.
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